Framework for malware analysis in Android

Christian Urcuqui-López, Andrés Navarro Cadavid

Abstract


Android is a open source operating system with more than a billion of users, including all kind of devices (cell phones, TV, smart watch, etc). The amount of sensitive data “using” this technologies has increased the cyber criminals interest to develop tools and techniques to acquire that information or to disrupt the device's smooth operation. Despite several solutions are able to guarantee an adequate level of security, day by day the hackers skills grows up (because of their growing experience), what means a permanent challenge for security tools developers. As a response, several members of the research community are using artificial intelligence tools for Android security, particularly machine learning techniques to classify between healthy and malicious apps; from an analytic review of those works, this paper propose a static analysis framework and machine learning to do that classification.

Keywords


Framework; machine learning; security; Google; malware.

Full Text:

PDF

References


Batyuk, L., Herpich, M., Camtepe, S. A., Raddatz, K., Schmidt, A., & Albayrak, S. (2011). Using static analysis for automatic assessment and mitigation of unwanted and malicious activities within Android applications. Malicious and Unwanted Software (MALWARE), 2011 6th International Conference on. Piscataway, NJ: IEEE.

Chan, P. K. & Lippmann, R. P. (2006). Machine learning for computer security. The Journal of Machine Learning Research, 7, 2669-2672.

Chang, C. C. & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

Documentation of scikit-learn 0.16.1. (2014). [blog: Scikit-learn]. Retrieved from: http://scikit-learn.org/0.16/documentation.html

Drake, J. J., Lanier, Z., Mulliner, C., Fora, P. O., Ridley, S. A., & Wicherski, G. (2014, March 26). Android Hacker's Handbook. John Wiley & Sons.

Elenkov, N. (2014). Android security internals: An in-depth guide to Android's security architecture. San Francisco, CA: No Starch Press.

Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. U. R., & Shamshirband, S. (2014). A study of machine learning classifiers for anomaly-based mobile botnet detection. Malaysian Journal of Computer Science, 26(4), 251-265.

Fuentes, M. & Gómez, J. (2014). Valoración de la plataforma ASEF como base para detección de malware en aplicaciones Android. Ingenium, 8(21), 11-23.

Ghorbanzadeh, M., Chen, Y., Ma, Z., Clancy, T. C., & McGwier, R. (2013, January). A neural network approach to category validation of android applications. In Computing, Networking and Communications (ICNC), 2013 International Conference on (pp. 740-744). Piscataway, NJ: IEEE.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.

Krutz, D. E., Mirakhorli, M., Malachowsky, S. A., Ruiz, A., Peterson, J., Filipski, A., & Smith, J. (2015, May). A dataset of open-source Android applications. In Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on (pp. 522-525). Los Alamitos, CA: IEEE Computer Society.

Londoño, S., Urcuqui, C., Amaya, M., Gómez, J., & Cadavid, A. (2015). SafeCandy: System for security, analysis and validation in Android. Sistemas & Telemática, 13(35), 89-102.

Metz, C. (2016, junio 2). Google’s training its ai to be Android’s security guard. Wired. Retrieved from: https://www.wired.com/2016/06/googles-android-security-team-turns-machine-learning?utm_content=buffere407d

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2014). Evaluation of machine learning classifiers for mobile malware detection. Soft Computing, 20(1), 343-357. 2014.

Peiravian, N., & Zhu, X. Machine learning for android malware detection using permission and api calls. In Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference on (pp. 300-305). Los Alamitos, CA: IEEE Computer Society.

Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., & Ioannidis, S. (2014, April). Rage against the virtual machine: hindering dynamic analysis of android malware. In Proceedings of the Seventh European Workshop on System Security (p. 5). New York, NY: ACM.

Pichai, S. (2014). Google I/O 2014 - Keynote [video. 6:43m]. Retrieved from https://www.google.com/events/io

Sahs, J., & Khan, L. (2012). A machine learning approach to android malware detection. In Intelligence and Security Informatics Conference (EISIC), 2012 European (pp. 141-147). Los Alamitos, CA: IEEE Computer Society.

Sharif, M. I., Lanzi, A., Giffin, J. T., & Lee, W. (2008). Impeding malware analysis using conditional code obfuscation. In NDSS Symposium 2008 (paper 19). Reston, VA: Internet Society. Retrieved from: http://www.isoc.org/isoc/conferences/ndss/08/papers/19_impeding_malware_analysis.pdf

Urcuqui, C. & Cadavid, A. Machine learning classifiers for Android malware analysis. Proceedings of the IEEE Colombian Conference on Communications and Computing 2016 [in press].

Wu, W. C. & Hung, S. H. (2014). DroidDolphin: a dynamic Android malware detection framework using big data and machine learning. In: Proceedings of the 2014 Conference on Research in Adaptive and Convergent Systems (pp. 247-252). New York, NY: ACM. October 2014.

Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013). A new android malware detection approach using bayesian classification. In Advanced Information Networking and Applications (AINA), 2013 IEEE 27th International Conference on (pp. 121-128). Los Alamitos, CA: IEEE Computer Society.

Zhou, Y., & Jiang, X. (2012, May). Dissecting android malware: Characterization and evolution. In Proceedings 2012 IEEE Symposium on Security and Privacy: S&P 2012 (pp. 95-109). Los Alamitos, CA: IEEE Computer Society.




DOI: http://dx.doi.org/10.18046/syt.v14i37.2241

Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments